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Abstract. A simple aggregation model on one-dimensional lattice is presented io study lhe 
scaling behaviour. The model is an extended version of the coalescing random walket model to 
take into account the dependence of fransition probability upcm mass s of polticle. A particle 
moves ahead one step with transidon probability 'T and is stopped with probability 1 - T where 
T = a  + bs- (or > 0, a, b 2 0 and n + b < 1). It is shown that the mean mass (s) of particle 
scales as (3) FJ to where f is time, The scaling relation f i  = 1/(1 +a) is satisfied for a = 0.0. 
For a > 0, the scaling relation f i  = max[O.S, 1/(1 +a)] is satisfied. We d i m s s  the Yelation 
behveen our model and the extended m eouation. 

Recently, there has been increasing interest 'in the scaling structures of growth processes 
such as the cluster-cluster aggregation (CCA) model, the rough surface model, the diffusion- 
limited aggregation (DLA) model, and the river network model [1-31. Considerable work 
has already been performed on the scaling properties of non-equilibrium fractlll growth. 
Most attempts to develop a theoretical understanding of fractal growth focused directly 
or indirectly on the screening process, Even for very simple models such as DLA this 
has proven to be a formidable challenge. For 'the case of a growing surface, some 
analytical attempts have succeeded.in deriving the scaling exponents. The main approach 
for describing the growth of surfa6es and interfaces is based on coarse-grained Langevin- 
type equation [3]. Kardar, Parisi and B a n g  (Kpz) [4] have pkented a nonhear hiterface 
equation. In two dimensions, the scaling of the interface width w(L, t )  on length scale L at 
time t for the Kpz equation have been shown from a rentiihblization-group andysis to be 
w(L,  t )  = L' /2f ( t /L3/2)  where f(x) % x ' / ~  for .r << 1 and f ( x )  M constant for x >> I[]. 

The scaling exponent of the cluster-size distribution in it simple ciggregation model with 
injection has analytically been derived by Takayasu [5].  However, the governing equation 
such as 'the K P ~  equation has been unknown until how fot aggregation models. The scaling 
exponents for aggregation models have rarely been derived from analytical method. 

In this letter, we present a simple aggegatioh model on one-$imensional lattice to be 
described by the diiffiision equation With generalized nonlinearity. We study the scaling 
behaviour of the aggregation process. In order to obtain the lattice model for the nohliaear 
diffusion equatioh, we extend the coalescing randoh Walket moael to take into acCount 
the dependence of transition probabdity ilpoa m a s  s of a particle. When MO p d c f e s  
collide with each othet, they coalesce. kach cluster (or particle) is infinitesimhl but has 
a finite mass. We show that the mean mass (s) of a pai&le scales z?s (s) ix t p ,  the 
scaling relation ,3 = 1/11 +a) is satisfied for a = 0.4 and for a =- 0, the scaling relation 
,8 = max[O.fr, I/(1 +&)I is siiti&ed. Ifi the h i t  of b = 0 and a = 1/2, this nlodel reduces 
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Figure 1. The tog-tog plot of the mean m3ss (s) n@sl 
time I for CI = 0.3.03.0.9, 1 5 and 2.0 in the case of 
n = O .  

Figure L The plot of the scaling exponent ,B agdnst 
U in the me of a = 0. The solid curve rcpfcscnts the 
relation ,B = l/(l TU). 

to the well known irreversible one-species coagulation model [6] .  This model is closely 
related to the diffusion-limited reaction [7]. Also, the aggregation model wilh injection in 
the limit is consistent with the Scheidegger’s river-network model [SI. 

Our aggregation model is defined on a one-dimensional lattice of L sites with periodic 
boundary conditions. Each site is occupied by one particle or it is empty. We extend 
the coalescing random walker model to take into account the mass-dependent transition 
probability T .  In our model, transition probability T depends only on the cluster mass s. 
For an arbitrary configuration, one update of the system is performed in parallel for all 
particles. A particle moves ahead one step with tnnsiuon probability T = a 4- 6s-‘ and 
is stopped with probability 1 - T .  When two particles with masses SI and sz collide with 
each other, they coalesce and the resultant panicle has the mass SI T SZ. Each cluster (or 
panicle) is infinitesimal but a finite mass. Let s(i ,  I )  be the mass of the particle on the site i 
at the r time step. The nggvegation can be represented by the stochastic equation for s(i. t )  

‘(1) 
where w(i,  I )  is a stochastic variable which is equal to 1 with mass-dependent probability 
T = a + bs-” (a > 0, a ,  6 > 0 and a T b < 1) when the panicle on the ith site jumps to 
the (i + 1)th site and which is equal to 0 with probability I - T when the particle on the ith 
site does not jump to the (i -!- l)th site. In the limit of a = 112 and b = 0, the aggregation 
is consistent with the ordinary coalescing random walker model. We resbict ourselves to 
the case of a > 0 since the mean cluster size (s) does not scale for the case of a c 0. The 
aggregation process with cf c 0 cannot be simulated by our aggregation model. 

We perform simulations of our aggregation model according to (1) for the system size 
L = lo5. Each run is calculated until IO’ time steps. We sNdy the scaling behaviour of 
the cluster-mass distribution. We define the mean mass (s) of particles as 

s(i, I + 1) = [l - w( i ,  ~ ) ] s ( i .  I) + w(i - 1, r)s(i - 1, t )  

(s) = 2 s2/Is/’ 2 sng (2 )  
( = I  .?=I 

where n ,  is the cluster-mass distribution with mass s. Figure 1 shows the log-log plot of 
thc mean mass (5) against time f for ct = 0.3,O.S. 0.9, 1.5 and 2.0 where a = 0. The mean 
mass (SI scales as 

(s) zz Ib. (3) 
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Figure 2 shows the plot of the scaling exponent p against a. The solid curve represents 
the relation 

p = 1/(1 +a). (4) 

The data agree with the scaling relation (4). 
The scaling relation (4) is derived from a simple scaling argument as follows. The 

increment of the typical mass by the coalescence per unit time is proportional to the transition 
probability. Then, the following equation is satisfied 

ds/dt = s - ~ .  (5 )  

The particle mass s scales as s = t'/('*). We calculate the case of a =-b = 1/2. Figure 3 
shows the log-log plot of the mean mass (s) against time t for a = 0.3,O.S. 1.0, 1.5 and 
2.0. Figure 4 shows the plot of the scaling exponent p against a. For 0 < a < 1, the 
scaling exponent ,9 is given by (4). For a > 1, the exponent p becomes the constant value 
0.5. The scaling exponent p is represented by 

p = max[l/Z, 1/(1 fa)]. (6) 

The value 0 = 1/2 of the scaling exponent p agrees with that obtained by the coalescing 
random walker model. When the power a is larger than 1, the aggregation process is 
governed by the ordinary coalescing random walk. 
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Figure 3. The log-log plot of the me& mass (s) against 
time t for e = 0.3,0.5, 1.0,1.5 and 2.0 in the case of 
n = b = 112. 

Figure 4. The plot of the scaling exponent @ against 01 

in the case of a = b = 112. The solid curve represents 
the relation p = mau[l/Z, 1/(1 f e)]. 

We calculate the cluster-mass distribution a,. The cumwlative mass distribution NS 
is defined as N ,  = cy=, n,.. Figure 5 shows the semi-log plot of the cumulative mass 
distribution N,  against the mass s for t = lo3, 3 x 16, IO4 and 3 x lo4 where a = 0.5. 
In order to study the scaling form of the cumulative mass distribution, we plot the rescaled 
cumulative distribution against the rescaled mass. Figure 6 shows the semi-log plot of the 
rescaled cumulative distribution t0.652Nr against the rescaled mass t-o.652s for the data in 
figire 5 .  The data collapses on a curve. We find that the cumulative mass distribution is 
described in terms of 

N\ = ( s ) - - ' f ( s / ( s ) )  (7) 
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Figure 5. 
t = IO3, 3 x Id. IO' and 3 x lod where a = 0.5. 

The semi-log plot of the cumulative mass distribution N, against mass s for 

Figure 6. The semi-log plot of the rescaled cumulative distribution to,MzNs against the rescaled 
mass ro~srzs for the data in figure 5. 

where the scaling function f ( x )  is nearly a Gaussian distribution and (s) x t p .  
We consider the governing equation for the aggregation process. We discuss the relation 

between ow result and the Kpz equation with generalized nonlinearity. The number of 
particles decreases with time by coalescence. The typical mass (s) of particles increases 
with time. The particle number is proportion to the inverse ($)-I of the typical mass on the 
one-dimensional system. The density p is proportion to (s)-'. In the limit of a = 112 and 
b = 0, the aggregation process reduces to the ordinary coalescing random walker model. 
Then, the typical mass (s) increases as (s) x tl'* due to the Brownian motion. The density 
p decreases as p = t'n. The density p is governed by the ordinary diffusion equation. In 
our case, at a coarse-grained scale, the density changes by diffusion and convection. The 
convection term is represented by V P ' + ~  since the drift velocity of particles is proportional 
to the transition rates-u. Then, the density p is governed by the extended Burgers equation 
with generalized nonlinearity: 

aplat = uv2p + ~ v , d + ~ .  (8) 

The extended Burgers equation is transformed to the generalized KPZ equation 
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where p = -Vh. Krug and Spohn [9] have found that the dynamic exponent z is given by 

z = min12, -<e + (Y + 11 (10) 

where < is the static exponent. The dynamic exponent z equals our scaling exponent p- '  
since the characteristic time t scales as f % lZ. The static exponent < represents the exponent 
of the covariance ( ( h ( x ,  t )  - h(x', t ) )2)  e Ix' = x l q .  In our case of the random initial 
configuration, < = 0. The scaling relation (6) is obtained. In the limit of a = 0, U = 0 and 
the scaling relation (4) is obtained, 

In summary, we presented a simple aggregation process described by the nonlinear 
diffusion equation. We calculated the scaling exponent by computer simulation. We found 
that the scaling exponent agrees with that derived from the nonlinear diffusion equation. 
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